Site icon CG's Chemistry Solutions

Important Orders in Inorganic Chemistry: 50+ Orders with Exceptions

Spread the love

In this post, we will discuss about the important orders in inorganic chemistry and then some exceptions with valid reasons in the last.

Important Orders in Inorganic Chemistry

Isotopes of Hydrogen

Three isotopes of hydrogen are Hydrogen (H), Deuterium (D) and Tritium (T).

Relative AbundanceH > D > T
Atomic massH < D < T
Melting pointH < D < T
Boiling pointH < D < T
DensityH < D < T
Enthalpy of fusionH < D
Enthalpy of vaporisationH < D
Bond dissociation enthalpyH < D
Internuclear distanceH = D

Oxides of Isotopes of Hydrogen

Melting pointH2O2 < H2O < D2O
Boiling pointH2O < D2O < H2O2
Enthalpy of formationH2O < D2O
Enthalpy of vaporisationH2O < D2O
Temperature of maximum density4 °C (H2O) and 11 °C (D2O)
DensityH2O < D2O < H2O2
ViscosityH2O < D2O < H2O2
Dielectric constantH2O2 < D2O < H2O
Electrical conductivityH2O2 < H2O

Energy Released by Combustion of Fuels

Per moleH2(l) < H2(g) < CH4 < LPG < Octane
Per gramOctane < LPG < CH4 < H2(l) < H2(g)
Per literH2(g) < CH4 < H2(l) < LPG < Octane

Group 1 Elements

Ionisation enthalpyLi > Na > K > Rb > Cs
Hydration enthalpyLi > Na > K > Rb > Cs
Metallic radiusLi < Na < K < Rb < Cs
Ionic radiusLi < Na < K < Rb < Cs
Melting pointLi > Na > K > Rb > Cs
Boiling pointLi > Na > K > Rb > Cs
DensityLi < K < Na < Rb < Cs
Standard reduction potentialNa > K < Cs > Rb > Li
Occurence in lithosphereNa > K > Rb > Li > Cs

Group 2 Elements

Ionisation enthalpyBe > Mg > Ca > Sr > Ra > Ba [IE(II)>IE(I)]
Hydration enthalpyBe > Mg > Ca > Sr > Ba
Metallic radiusBe < Mg < Ca < Sr < Ba
Ionic radiusBe < Mg < Ca < Sr < Ba
Melting pointMg < Ra < Ba < Sr < Ca < Be
Boiling pointMg < Sr < Ca < Ba < Be
DensityCa < Mg < Be < Sr < Ba < Ra
Standard reduction potentialBe > Mg > Ca > Sr > Ba = Ra
Occurence in lithosphereCa > Mg > Ba > Sr > Be

Learn periodic table using mnemonics, click here.

Group 13 Elements

Atomic radiusB < Ga < Al < In < Tl
Ionic radiusB < Al < Ga < In < Tl
Ionisation enthalpyIE1: In < Al < Ga < Tl < B
IE2: Al < In < Tl < Ga < B
IE3: In < Al < Tl < Ga < B
ElectronegativityAl < Ga < In < Tl < B
DensityB < Al < Ga < In < Tl
Melting pointGa < In < Tl < Al < B
Boiling pointTl < In < Ga < Al < B

Group 14 Elements

Atomic radiusC < Si < Ge < Sn < Pb
Ionic radiusSi < Ge < Sn < Pb
Ionisation enthalpyIE1: C > Si > Ge > Pb > Sn
IE2: C > Si > Ge > Pb > Sn
IE3: C > Ge > Si > Pb > Sn
IE4: C > Ge > Si > Pb > Sn
ElectronegativityC > Si = Ge = Sn < Pb (C > Pb)
DensityGraphite < Si < Diamond < Ge < Beta form of Sn < Pb
Melting pointC > Si > Ge > Pb > Sn
Boiling pointC > Ge > Sn > Pb
Standard reduction potentialC > Si = Ge > Pb > Sn

Group 15 Elements

Atomic radiusN < P < As < Sb < Bi
Ionic radiusSb < Bi < N < P < As
Ionisation enthalpyIE1: N > P > As > Sb > Bi
IE2: N > P > As > Bi > Sb
IE3: N > P > As > Bi > Sb
ElectronegativityN > P > As > Sb = Bi
Melting pointN < P < Bi < Sb < As
Boiling pointN < P < As < Bi < Sb
DensityN < P < As < Sb < Bi

Hydrides of Group 15 Elements

Melting pointPH3 < AsH3 < SbH3 < NH3
Boiling pointPH3 < AsH3 < NH3 < SbH3 < BiH3
Bond lengthNH3 < PH3 < AsH3 < SbH3
Bond angleNH3 > PH3 > AsH3 > SbH3
Enthalpy of formationPH3 < NH3 < AsH3 < SbH3 < BiH3
Enthalpy of dissociationNH3 > PH3 > AsH3 > SbH3

Group 16 Elements

Atomic radiusO < S < Se < Te < Po
Ionic radiusO < S < Se < Te < Po
Electron gain enthalpyS > Se > Te > Po > O
Ionisation enthalpyO > S > Se > Te > Po
ElectronegativityO > S > Se > Te > Po
DensityO < S < Se < Te
Melting pointO < S < Se < Te < Po
Boiling pointO < S < Se < Te < Po

Hydrides of Group 16 Elements

Melting pointH2S < H2Se < H2Te < H2O
Boiling pointH2S < H2Se < H2Te < H2O
Bond lengthH2O < H2S < H2Se < H2Te
Bond angleH2O > H2S > H2Se > H2Te
Enthalpy of formationH2S < H2Se < H2Te < H2O
Enthalpy of dissociationH2O > H2S > H2Se > H2Te
Dissociation constantH2O < H2S < H2Se < H2Te

Group 17 Elements

Atomic radiusF < Cl < Br < I
Ionic radiusF < Cl <Br < I
Ionisation enthalpyF > Cl > Br > I
Electron gain enthalpyCl > F > Br > I
ElectronegativityF > Cl > Br > I
Enthalpy of hydrationF > Cl > Br > I
Melting pointF2 < Cl2 < Br2 < I2
Boiling pointF2 < Cl2 < Br2 < I2
DensityF2 < Cl2 < Br2 < I2
Bond lengthF2 < Cl2 < Br2 < I2
Bond dissociation enthalpyI2 < F2 < Br2 < Cl2
Standard reduction potentialF2 > Cl2 > Br2 > I2

Hydrogen Halides

Melting pointHCl < HBr < HF < HI
Boiling pointHCl < HBr < HI < HF
Bond lengthHF < HCl < HBr < HI
pKa valueHF > HCl > HBr > HI
Dissociation enthalpyHF > HCl > HBr > HI

Group 18 Elements

Ionisation enthalpyHe > Ne > Ar > Kr > Xe > Rn
Electron gain enthalpyHe < Rn < Xe < Ar = Kr < Ne
Melting pointHe < Ne < Ar < Kr < Xe < Rn
Boiling pointHe < Ne < Ar < Kr < Xe < Rn
DensityHe < Ne < Ar < Kr < Xe < Rn

Most wanted inorganic chemistry

Exceptions in Inorganic Chemistry

Atomic Radius

Expected order: B < Al < Ga < In < Tl

Actual order: B < Ga < Al < In < Tl

Reason: Gallium has smaller size because of poor shielding of d-orbital.

Ionisation enthalpy

Expected order: B > Al > Ga > In > Tl

Actual order: B > Tl > Ga > Al > In

Reason: On moving down the group, the ionisation energy decreases, this is true for B and Al. The ionisation energy of Ga is unexpectedly higher than that of Al. This is due to poor shielding effect by completely filled d-orbitals in the inner shell of Ga, Hence, valence electrons of Ga are  strongly held by nucleus, therefore the removal of electron from Ga is highly difficult compared to Al. A similar increase is observed from In to Tl due to presence of f-orbital electrons in the inner shell of Tl which have poor shielding effect.

Lewis Acid Strength

Expected order: BF3 > BCl3 > BBr3 > BI3

Actual order: BF3 < BCl3 < BBr3 < BI3

Reason: Back bonding

Acidic Strength

Acidic strength increases with increase in oxidation number. Examples are as follows:

HClO4 > HClO3 > HClO2 > HClO

H2SO4 > H2SO3

HNO3 > HNO2

But in case of oxoacids of phosphorus, it is the exceptional case, based on stability of conjugate base.

Expected order: H3PO4 > H3PO3 > H3PO2

Actual order: H3PO2 > H3PO3 > H3PO4

Reason: This can be explained on the basis of stability of conjugate base. More stable the conjugate base, more will the acidic strength. And cross conjugation leads to unstability of conjugate base.

Hybridisation

1. PCl5, when exists in gaseous state, exhibits sp3d hybridisation. But in solid state, it exists as [PCl4]+ and [PCl6]. Here [PCl4]+ exhibits sp3 hybridisation while [PCl6] exhibits sp3d2 hybridisation.

2. PBr5, when exists in gaseous state, exhibits sp3d hybridisation. But in solid state, it exists as [PBr4]+ and Br. Here [PBr4]+ exhibits sp3 hybridisation.

Existence of compounds

CompoundExistenceCompoundExistence
IF7ExistIH7Not exist
PCl5ExistPH5Not exist
SF4ExistSH4Not exist
SF6ExistSH6Not exist
XeF2ExistXeH2Not exist
XeF4ExistXeH4Not exist

Electron affinity

Expected order: F > Cl > Br > I

Actual order: Cl > F > Br > I

Reason: Due to interelectronic repulsion.

Similarly the correct order for group 16 is S > Se > Te > Po > O

Bond Dissociation Enthalpy

Expected order: F2 > Cl2 > Br2 > I2

Actual order: Cl2 > Br2 > F2 > I2

Reason: Due to interelectronic repulsion between F-F, there is less amount of energy to break the bond.

Boiling point

Expected order: HF < HCl < HBr < HI

Actual order: HCl < HBr < HI < HF

Reason: Due to H-bonding in HF, it has highest boiling point.

Expected order: PH3 < AsH3 < SbH3 < BiH3 < NH3 (based on H-bonding)

Actual order: PH3 < AsH3 < NH3 < SbH3 < BiH3

Reason: Sb and Bi are heavier elements, so their boiling point are higher.

Expected order: H2O < H2S < H2Se < H2Te

Actual order: H2S < H2Se < H2Te < H2O

Reason: Hydrogen bonding

Alkali Metals

Alkali metals,. except Li, cannot react with nitrogen gas at room temperature.

Lithium easily reacts with nitrogen at room temperature to form Li3N.

Ionization enthalpy

Expected order: Li < Be < B < C < N < O < F < Ne

Actual order: Li < B < Be < C < O < N < F < Ne

Reason: B < Be (Penetration effect) and O < N (Half filled stability)

Bond Angle

Order: OCl2 (111o) > OH2 (104.5o) > OF2(103o)

Brown Ring Test

Complex formed in the brown ring test is [Fe(H2O)5NO]SO4. The oxidation state of NO is +1, so the oxidation state of Fe is +1.

Ionisation enthalpy of 3d-series

Sc < Ti > V < Cr < Mn < Fe > Co < Ni < Cu < Zn

Note: If there is any incorrect order, do comment the correct order. If any other exceptional case or important order you know, do comment down, that will be added into the post. Thanks.

You may also follow me on instagram, click here.


Spread the love
Exit mobile version